quarto

What is quarto?

  • Open-source document format and computational notebook system.
  • Integrates Markdown for text and code execution in R (and other languages!)
  • Easily generate and re-generate a quarto document to produce a professional-looking document

Why not R Markdown?

Only because quarto is newer and more featured!

  • Anything you already know how to do in R Markdown you can do in quarto, and more!1
  • All of these slides, website, etc. are all made in quarto.
  • If you know and love R Markdown, by all means keep using it!

Quarto basics

# My title

Some text

Some *italic text*

Some **bold text**


```{r}
x <- 3
x
```

Quarto basics

My title

Some text

Some italic text

Some bold text

x <- 3
x
[1] 3

Chunk options

Some of the ones I find myself using most often:

```{r}
#| eval: false
#| error: true
#| cache: true
#| warning: false
#| message: false
x <- 3
```

Also echo (can’t include above because it conflicts with my slide options!)

Chunks can produce figures or tables

```{r}
#| label: tbl-one
#| tbl-cap: "This is a great table"
knitr::kable(mtcars)
```
Table 1: This is a great table
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

Chunks can produce figures or tables

```{r}
#| label: fig-hist
#| fig-cap: "This is a histogram"
hist(rnorm(100))
```

Figure 1: This is a histogram

Cross-referencing

You can then refer to those with @tbl-one and @fig-hist and the Table and Figure ordering will be correct (and linked)

@fig-hist contains a histogram and @tbl-one a table.

gets printed as:

Figure 1 contains a histogram and Table 1 a table.

Inline R

I often create a list of stats that I want to report in a manuscript:

stats <- list(n = nrow(data),
              mean_age = mean(data$age))

I can then print these numbers in the text with:

There were `r stats$n` participants with a mean age of `r stats$mean_age`.

which turns into:

There were 1123 participants with a mean age of 43.5.

Conclusion

There are ~1 billion other features to know about quarto.

The website is an amazing resource.

Additional resources for R Markdown will have a lot of overlap